

Ricadute economiche e sociali della geotermia

Marco Frey

Pisa 7/5/2018

Implicazioni socio-economiche

- 1) Il dividendo multiplo delle rinnovabili e il loro sviluppo
- 2) Impatto sullo sviluppo locale
 - a) Crescita
 - b) Occupazione
 - c) Indotto
 - d) Competitività
- 3) Sostenibilità
- 4) Accettabilità sociale
- 5) Ambiente

Il dividendo multiplo delle rinnovabili

Crescita del peso (capacità e produzione) delle rinnovabili a livello internazionale

Le rinnovabili escluso il grande idroelettrico costituiscono ormai oltre il 50% (55,3 nel 2016) della capacità di generazione di energia aggiunta ogni anno

FIGURE 24. NET POWER GENERATING CAPACITY ADDED IN 2016 BY MAIN TECHNOLOGY, GW

Renewable capacity change as % of global capacity change (net)

- ----Renewable power as % of global power capacity
- Renewable power as % of global power generation

FIGURE 4. GLOBAL NEW INVESTMENT IN RENEWABLE ENERGY: DEVELOPED V DEVELOPING COUNTRIES, 2004-2016, \$BN

I paesi non sviluppati e in particolare i BRICS contribuiscono sempre di più alla crescita delle rinnovabili

193

New investment volume adjusts for re-invested equity. Total values include estimates f undisclosed deals. Developed country volumes are based on OECD countries excluding Mexico, Chile, and Turkey

Source: UN Environment, Bloomberg New Energy Finance

FIGURE 12. GLOBAL NEW INVESTMENT IN RENEWABLE ENERGY BY REGION, 2004-2016, \$BN

COUNTRY AND ASSET CLASS, 2016, AND GROWTH ON 2015, \$BN

ENERGY BY REGION, 2016, \$BN

FIGURE 5. GLOBAL NEW INVESTMENT IN RENEWABLE ENERGY BY SECTOR, 2013, AND GROWTH ON 2012, \$BN

Solare ed eolico (in crescita relativa nell'ultimo anno) fanno la parte del leone

FIGURE 5. GLOBAL NEW INVESTMENT IN RENEWABLE ENERGY BY SECTOR, 2016, AND GROWTH ON 2015, \$BN

Osservando tutte le fonti rinnovabili nel loro complesso, IRENA documenta un incremento nella potenza installata pari a 167 GW, all'interno dei quali la geotermia registra una crescita pari a 644 MW. La potenza geotermica installata passa dunque dai 12.249 MW installati a fine 2016 ai 12.894 MW documentati a fine 2017 (+5,3%).

Un'analisi comparativa di Evans (Renewable and Sustainable Energy Reviews, 2008) avevano mostrato che la geotermia era la meno appetibile delle rinnovabili rispetto ad una serie di variabili:

	Photovoltaics	Wind	Hydro	Geothermal
Price	4	3	1	2
CO _{2-e} Emissions	3	1	2	4
Availability and limitations	4	2	1	3
Efficiency	4	2	1	3
Land use	1	3	4	2
Water consumption	2	1	3	4
Social impacts	2	1	4	3
Total	20	13	16	21

Italia: produzione rinnovabili vs tradizionali

Italia: dinamica mix rinnovabili

Fonte: Terna

Analisi delle pubblicazioni

journal homepage: www.elsevier.com/locate/renene The production of scientific knowledge on renewable energies:

CrossMark Worldwide trends, dynamics and challenges and implications for

Renewable Energy

Francesco Rizzi^{a, b, *}, Nees Jan van Eck^c, Marco Frey^a

0,8% 0.7% RESs: Exponential growth both in 0.6% absolute and relative terms 0,5% 0,4% 0,3% 0.2% 0.1% 0.0% 992 993 1995 966 998 1999 2000 2006 2008 994 1997 2002 2003 2004 2005 2007 2009 2010 2001 2011

management

Distribuzione e trend per fonte

Dinamica

2a) Impatto sullo sviluppo: il caso dell'Islanda

«Vengo da un Paese che per secoli è stato tra i più poveri d'Europa – ha detto a Firenze recentemente Grímsson presidente dal 1996 al 2016 dell'Islanda – ma che negli ultimi 60 anni è stato in grado di portare avanti un processo di sviluppo per la prosperità economica e il benessere sociale. Una trasformazione straordinaria vissuta in pieno dalla mia generazione, cresciuta in un Paese dipendente all'80% dalle importazioni di carbone e petrolio; negli ultimi decenni ci siamo dedicati invece esclusivamente allo sviluppo delle energie pulite, in primis la geotermia». «Il settore geotermico è diverso dagli altri settori energetici – ha dettagliato l'ex presidente islandese – perché consente una grande diversificazione, importante per aumentare il benessere sociale di una nazione. Vi invito a visitare il mio Paese, in pochi giorni potrete rendervi conto delle attività economiche rese possibili dalla geotermia: oggi convogliamo l'energia geotermica nelle città tramite reti molto estese di teleriscaldamento; coltiviamo in serre prodotti agricoli prima al di fuori della nostra portata e abbiamo promosso lo sviluppo di importanti attività turistiche».

2a) Impatto sullo sviluppo i numeri italiani

Relativamente ai risultati economici e occupazionali dello sviluppo delle rinnovabili elettriche nel 2016, all'energia geotermica il GSE imputa spese di esercizio e manutenzione (O&M) pari a 52 milioni di euro; un valore aggiunto pari a 40 milioni di euro; 689 occupati permanenti tra diretti e indiretti, contabilizzati come ULA (Unità Lavoro Anno).

Ben più significativi sono i valori attribuibili alle "Pompe di calore (aerotermiche, idrotermiche e geotermiche)", che mostrano 2.148 milioni di euro in investimenti, 2.922 milioni di euro in spese O&M, 3.300 milioni di euro in valore aggiunto, 20.937 occupati diretti+indiretti temporanei (ULA), 10.592 occupati diretti+indiretti permanenti (ULA).

.	Bioenergy biomass, biofuels, biogas	İİİİİ	İİİİİ	İİİİİ	†††††	İİİİİ	İİİİİ	İİİİİ
Q	Geothermal	İİİİİ	İİİİİ	İİİİİ	İİİİİ	İİİİİ	ŤŤŤŤŤ	ŤŤŤŤŤ
	Solar energy solar PV, CSP, solar heating/cooling	TTTT	TTTT	TTTT	TTTT	İİİİİ	İİİİİ	İİİİİ
	Wind power	ŤŤŤŤŤ	ŤŤŤŤŤ	ŤŤŤŤŤ	ŤŤŤŤŤ	ŤŤŤŤ	ŤŤŤŤŤ	ŤŤŤŤŤ
\approx	Hydropower (small-scale)	ŤŤŤŤŤ	İİİİİ	<u>ŤŤŤŤŤ</u>	<u>ŤŤŤŤŤ</u>	İİİİ	ŤŤŤ	ŤŤŤŤŤ
\approx	Hydropower (large-scale)	İİİİİ	İİİİİ	İİİİİ	İİİİİ			ŤŤŤŤŤ

= 50,000 jobs

	World	China	Brazil	United States	India	Japan	Bang- ladesh	European Union ⁱ		
								Germany	France	Rest of EU
	THOUSAND JOBS									
🙁 Solar PV	3,095	1,962	4	241.9	121	302	140	31.6	16	67
🎦 Liquid biofuels	1,724	51	783°	283.7 ^f	35	3		22.8	22	48
🙏 Wind power	1,155	509	32.4	102.5	60.5	5	0.33	142.9	22	165
Solar heating/	828	690	43.4 ^d	13	13.8	0.7		9.9	5.5	20
🎦 Solid biomass ^{a, g}	723	180		79.7 ^e	58			45.4	50	238
🎦 Biogas	333	145		7	85		15	45	4.4	15
➢ Hydropower (small-scale) ^b	211	95	11.5	9.3 ¹	12		5	6.7	4	35
Geothermal energy ^a	182			35		2		17.3	37.5	62
🔅 CSP	23	11		5.2				0.7		3
Total	8,305 ^h	3,643	875.9	777.3	385	313	162.3	334 ^j	162	667 ^k
≥ Hydropower (large-scale) ^b	1,519	312	183	28	236	18		6	9	46
Total (including large-scale hydropower)	9,824	3,955	1,058	806	621	330	162	340	171	714

8.3 million + 1.5 million

 $\underset{\text{Total:}}{\overset{\text{World}}{1}} 9.8 \text{ million jobs}$

2b) L'occupazione nelle rinnovabili e nella geotermia a livello mondiale

Occupati nelle rinnovabili a livello globale meno di dieci anni fa

Figure 19: Estimated Global Employment in the Renewable Energy Sector, 2008

Technology	Global (2008)		
Wind	300,000		
Solar	170,000		
Solar Thermal	624,000		
Biomass	1,174,000		
Hydropower	39,000		
Genothermal	25,000		
Renewables combined	2,332,000		

Source: UNEP / ILO / WorldWatch Institute

Per quanto riguarda le ricadute occupazionali della geotermia in Italia si stima che gli occupati permanenti nella fase di esercizio e manutenzione degli impianti siano circa 38.000 nel settore delle rinnovabili elettriche e circa 34.000 nel settore delle rinnovabili termiche. Per quanto riguarda, invece, i lavoratori temporanei, quelli che sono stati impiegati nel corso del 2017 per l'installazione di nuovi impianti, si stima che siano 16.000 nel settore elettrico e 31.000 per il settore termico (installazione di pompe di calore, stufe e termocamini e solare termico).

In termini di incentivi all'energia geotermica sono stati dedicati 147 milioni di euro su un totale di 14,195 miliardi di euro e a fronte di contributi pari - ad esempio - a 7,144 miliardi di euro per il fotovoltaico

«Ogni anno 1 milione di visitatori arriva alla Laguna Blu, pagando un biglietto da 40€ per fare il bagno nell'acqua calda derivante da un impianto geotermico».

2c) L'indotto: il turismo

Per il 2017, come avvenuto nel 2016, vi sono stati **oltre 60mila accessi ai territori geotermici**, che stanno sta diventando sempre di più un'attrazione turistica e culturale per scuole, gruppi, turisti e visitatori provenienti dall'Italia e da molte parti del mondo. Indagini dell'IRPET hanno mostrato negli anni passati che:

Con riferimento all'apparato produttivo, all'impiego del fattore lavoro, ma anche con riguardo alle presenze turistiche e alla popolazione residente, le aree in cui si insediano impianti geotermici mostrano dinamiche del tutto in linea con le altre aree ad esse omogenee. Sviluppi positivi più dinamici sono ascrivibili a particolari caratteristiche della struttura produttiva dei territori o alla loro prossimità con territori più sviluppati.

Cerro Cabellon in Cile

Le pompe di calore in termini di valore nei diversi Paesi

Japan China Germany USA France Sweden Switzerland Austria Italy Finland - 200.0 400.0 600.0 800.0 1,000.0 1,200.0

Top 10 ranking by country, € mln

Excellence in Market Intelligence

17

GLOBAL GEOTHERMAL HEAT PUMP MARKET GEOGRAPHICAL SEGMENTATION

Global Geothermal Heat Pump Market By Geography 2016 (% share)

The Americas was valued at \$4.663 billion in 2016 and is expected to reach \$7.925 billion in 2021. EMEA is projected to reach \$13.470 billion in 2021, growing at a CAGR of 12.21%. APAC is growing at a CAGR of 13.09%, valued at \$2.442 billion in 2016. Saudi Arabia is a key market for heat pumps in the Middle East.

Technavio

3) Impatto socio-economico e sostenibilità

Grazie per l'attenzione

2