Geothermal Environmental Sustainability. Pisa, Italy. May 7, 2018

Human health aspects related to geothermal energy

Michael N. Bates, Ph.D.

School of Public Health University of California, Berkeley Health concerns around geothermal sites are mainly associated with:

- •Air pollution
- Water pollution

Geothermal gases

- Carbon dioxide
- Hydrogen sulfide
- Water vapor
- Methane
- Nitrogen
- Hydrogen
- Mercury vapor
- Radon

	1 H 1.01 3 Li 6.94 11 Na	2 4 Be 9.01 12 Mg			Pe Ele	ric c em	odi of 1 en	13 5 B 10.81 13 Al	14 6 C 12.01 14 Si	15 N 14.01 .5 P	16 8 0 15.99 16 S	17 9 F 19.00 17 Cl	18 2 He 4.00 10 Ne 20.18 18 Ar					
	22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
	19 K	20 Ca	21 Sc	²² Ti	23 V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	31 Ga	³² Ge	33 As	34 Se	35 <mark></mark>	36 Kr
┢	39.10	40.08	44.96 30	47.87	50.94 2.1	52.00 47	54.94 4 3	55.85 44	58.93 45	58.69 46	03.55 47	05.41 49	69.72 210	72.64	74.92	78.96	79.90	83.80 54
		Cr	V	7-	Nh	Ma	Te	Du	Dh	Dd		Cd	In	Cn So	ch		T	Va
	KD	S	I			NIO	IC	ĸu	KII	Pu	Ag	Cu	TU	SI	SD	IE	L	ve
\mathbf{F}	85.47	87.62	88.91 57	91.22 72	92.91	95.94 74	(98)	101.0/	102.91	106.42	107.87	112.41	114.82 Q 1	118./1	121./6	127.60	126.90	131.29
	\tilde{c}	Ba		цŕ	т_	$\sqrt{1}$			Tr	D+			ΤÎ	Dh	D:	Do	Λ+	Dn
	CS	Da	Ld		Id	VV	Re	US	11	FL	Au			FD	DI	FO	AL	
	132.91 87 Fr (223)	137.33 88 Ra (226)	138.91 89 Ac (227)	178.49 104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	190.23 108 HS (270)	192.22 109 Mt (268)	195.08 110 DS (281)	196.97 1111 Rg (272)	See http:	"It's Elemental: The Periodic Table" //pubs.acs.org/cen/80th/elements.html					
					58	59	60	61	62	63	64	65	66	67	68	69	70	71
					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
					140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
					90	91	92	93	94	95	96	97	98	99	100	101	102	103
					Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
					232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

4

Hydrides of Group 16 of the **Periodic Table**

Acute health effects of H₂S

Concentration (ppb) 3-20 10,000-50,000 50,000-100,000

100,000-150,000

230,000-500,000 500,000-1,000,000

Effects

Odor threshold

Eye irritation

Respiratory irritation, eye damage

Loss of smell, severe irritation

Pulmonary edema

Respiratory paralysis & death

The key outstanding question for H_2S : What are the health effects, if any, associated with long-term exposure to low levels of H_2S (e.g., < 3,000 ppb)? Main known mechanism of H₂S toxicity

- Prevention of mitochondrial respiration by inhibition of the cytochrome c oxidase (CCO) enzyme
- CCO is critical for cellular production of adenosine triphosphate (ATP), which supplies energy for biochemical reactions in the body
- Inhibition of the CCO enzyme leads to "chemical asphyxiation" of cells.

Sources of low-level H₂S exposure

- Paper mills
- Sewage treatment plants
- Oil and gas refineries
- Animal slaughterhouses
- Landfills
- Concentrated animal feeding operations (CAFOs)
- Volcanic and geothermal areas

Difficulties in studying the health effects of long-term, low-level exposure to H₂S

- The number of people exposed to H₂S in most situations is small
- There are other potentially toxic exposures at the same time
- Exposures vary widely over time and are difficult to measure
- There are barriers to investigation because of concerns about legal liability

"...studies should be initiated among the general population in a geothermal area, taking advantage of the natural conditions provided, for example, by the situation in Rotorua, New Zealand."

International Programme on Chemical Safety Environmental Health Criteria 19: Hydrogen sulfide WHO: Geneva, 1981

The Pacific "Ring of Fire"

Source: Hansell et al., Occup Env Med 2006; 63:150

Horwell CJ, et al. (2005) *J Volcanol Geothermal Research* 139:259–26

Fig. 1. Map of Taupo Volcanic Zone showing volcanic centres and geothermal areas.

Rotorua city

Rotorua Bath House (about 1906)

19

The recent study in Rotorua:

- Funded by the U.S. National Institute of Environmental Health Sciences (NIEHS) (Grant number R01ES019624).
- Recruited 1,640 Rotorua residents (aged 18-65 yrs) living in areas with widely varying levels of exposure to H₂S.
- Data were collected in 2008-2010.

Main health outcomes of the study

- Neuropsychological (cognitive) function
- Peripheral nerve function
- Respiratory function
- Cataract of the eye

The questionnaire--components

- Residential history in Rotorua, last 30 years
- Workplaces in Rotorua, last 30 years
- Schools in Rotorua, last 30 years
- Medical history
- Smoking history
- Alcohol consumption history
- Race/ethnicity, education, income
- Opinions, good or bad, about the geothermal emissions in Rotorua

FIG 3: LOCATION OF MAIN AREAS OF THERMAL ACTIVITY

Exposure assessment

- Radiello passive H₂S monitors set out for 2 weeks, mainly at homes of a widely distributed sample of 50-60 study participants
- Monitoring in:
 - summer 2010
 - winter 2010
 - winter 2011

- Residential, workplace and school locations over last 30 years all geocoded
- Combine geocoding and monitoring results to create an individual H₂S exposure profile for each participant

Rotorua with original sampling selections and results from actual sites (homes) for H_2S , summer 2010

Current homes and workplaces of study participants

Summary of Rotorua study results

- •5 main publications, 2013-2017
- No evidence that H₂S exposure was associated with cataract of the eye or effects on the central or peripheral nervous systems.
- Some evidence that higher exposures to H₂S in Rotorua were associated with reduced prevalence of asthma and asthma symptoms, and improved lung function.

Adjusted prevalence ratios (95% confidence intervals) for current asthma.

Adjusted prevalence ratios (95% confidence intervals) for ever diagnosed with asthma.

Rapidly increasing science literature showing :

- H₂S is an important, naturally produced, signalling molecule in the body ('gasotransmitter')
- Very low physiologic levels of H_2S can:
 - relax smooth muscles
 - reduce blood pressure
 - Increase antioxidant enzymes in the body
 - reduce metabolic rate
 - reduce inflammation
- Various medical and surgical uses of H₂S are being considered by medical scientists.

However, ...

•Studies so far have mostly been carried out in animals.

 Human research (e.g., epidemiology or clinical studies) data are very limited.

Rescent H₂S studies from Iceland

Recent studies from Iceland have concluded that there is evidence for:

- An increase in prescriptions for anti-asthma drugs
 3-5 days following spikes of H₂S in Reykjavik.
- An increase in mortality and emergency hospital visits for heart disease on days that H₂S concentrations are > 7µg/m³
- Increases in risk of several cancer types (breast, prostate, kidney, and non-Hodgkins lymphoma) in users of geothermal waters and people living in geothermal areas (bathing, bathing and washing).

Conclusions

Further investigations are needed:

- (1) to confirm the results of the Rotorua study
- (2) to extend the Rotorua study to include cardiovascular outcomes
- (2) to confirm the outcomes of the Iceland studies, including resolving discrepancies with the Rotorua study (i.e., asthma)

Grazie mille!

